

Institute of Process Engineering - LTR

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Thomas Pielhop | 11.10.2016 | 1

EHzürich

Outline

- Background and state of the art
 - Resource wood
 - Chemicals from wood
 - Biochemical conversion
- Exemplary process Steam explosion with scavenger
 - Softwood recalcitrance
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT	
Departement Maschinenbau &	Verfahrenstechnik

Resource wood

Distribution of wood types in Switzerland^[1]

DMAVT Departement Maschinenbau & Ve

Adapted from: Swiss National Forest Inventory, 1995.
 Iinnaeus.nrm.se

Thomas Pielhop | 11.10.2016 | 3

ETH zürich

Resource wood

Wood use in biorefinery

- Flexible harvesting times \rightarrow avoid long storage
- Very low ash content
- High density → cost-effective transportation
- Established pulp&paper technologies
- Attractive for biochemicals conversion if recalcitrance surmounted

- + Standard pretreatment effective
- + Surplus available in Switzerland
- Hemicellulose: High C5 sugar content → more difficult to ferment

- + Fast and straight growing tree
- + Hemicellulose: High C6 sugar content → easy to ferment

- "Worst-case scenario" due to high lignin recalcitrance

Outline

- Background and state of the art
 - Resource wood
 - Chemicals from wood
 - Biochemical conversion
- Exemplary process Steam explosion with scavenger
 - Softwood recalcitrance
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT

Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering Thomas Pielhop | 11.10.2016 | 5

ETHzürich

Chemicals from wood – state of the art

Cellulose: Fuels, Chemicals, Fibres/Pulp **Hemicellulose**: Fuels, Chemicals

Example: Acid wood hydrolysis^[1]

- H₂SO₄, 130-190°C
- Sugar yield: 60-70%
- Since 1933 in S.U./Russia: ethanol, fodder yeast, furfural, xylitol,...
- Currently: E85 blend, lignin pellets

Extractives: Fuels (green diesel), Chemicals

[1] M.L. Rabinovich, 2009. [2] www.upmbiofuels.com Thomas Pielhop | 11.10.2016 | 6

ETH zürich

Chemicals from wood – state of the art

Lignin: Use as polymer

Applications^[1]

- Usually of lower value
- Used as dispersant, binder, emulsifier,...
- Polymers (e.g. phenolic resins, epoxy resins)

Lignin from biochemical conversion (steam pretreatment)^[1]

- Lower molecular weight, less polydisperse, sulphur-free
- > More versatile, no odor of sulphur-derived compounds

Dispersant

Asphalt emulsions

Phenol formaldehyde resin

Thomas Pielhop | 11.10.2016 | 8

Department Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Outline

- Background and state of the art
 - Resource wood
 - Chemicals from wood
 - Biochemical conversion
- Exemplary process Steam explosion with scavenger
 - Softwood recalcitrance
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Thomas Pielhop | 11.10.2016 | 9

EHzürich

Biochemical conversion – Steam pretreatment

Key factors of a pretreatment

- Enhance cellulose digestibility (High conversion, low enzyme dose)
- Cost-effective
- Simplify downstream processing

Steam pretreatment

- No chemicals; no waste streams
- Low inhibitor formation
- "Steam explosion" → Defibration of biomass
- Dominate at commercial scale

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Biochemical conversion – Pretreatment methods

Pretreatment	Advantages	Disadvantages	Feasibility
Milling	Effective for all biomass types	Very high energy input	
Liquid hot water	Hemicell. dissolved; No chemicals; Low toxic inhibitors	Average solid load; Not effective for soft- wood	0
Steam explosion	Hemicell. dissolved; No chemicals; Low toxic inhibitors; Defibration	Not effective for softwood	++
Dilute acid	Hemicell. dissolved; Low T and t	Average solid load; Toxic inhibitors; Acid neutralisation/recovery; Not really effective for softwood	0
Acid impreg. steam explosion	Hemicell. dissolved; Low T and t; Defibration	Toxic inhibitors; Acid neutralisa- tion/recovery; Not really effective for softwood	+
Lime	High total sugar yield; Removes lignin; Easy lime recovery	Very low $T \rightarrow \log t$; Commercial scal- ability: Not effective for softwood	_
Ammonia fibre expan. (AFEX)	No toxic inhibitors; Defibration	Not suitable for softwood and hardwood	+

DMAVT

[3] L.Shuai et al. Bioresource Technology. 2010. Department of Mechanical & Process Engineering [2] A. Limayem and S.C. Ricke. Prog. Energ. Combust. 2012. [4] E.C. Bensah and M. Mensah. Int. J. Chem. Eng. 2013. Thomas Pielhop | 11.10.2016 | 11

ETH zürich

Biochemical conversion – Pretreatment methods

Pretreatment	Advantages	Disadvantages	Feasibility
Sulphite pret. to overc. recalc. (SPORL)	Effective for hardwood and soft- wood; Low T and t; Defibration	Complex; Toxicity and environmental impact of SO_2 ; Lignosulphonates interfere with downstream processing	0
Organosolv	Effective for all biomass types	Investment and operation cost; Solvent recycling; Average solid load	_
Fungal bioconver- sion	Low energy and chemicals demand; Environmentally friendly	Very slow bioconversion; Average solid load	0

DMAVT

Department of Mechanical & Process Engineering [2] A. Limayem and S.C. Ricke. Prog. Energ. Combust. 2012. [4] E.C. Bensah and M. Mensah. Int. J. Chem. Eng. 2013. [3] L.Shuai et al. Bioresource Technology. 2010. Thomas Pielhop | 11.10.2016 | 12

ETHzürich						
Biochemical conversion –	Company	Location	Opening year	Feedstock	Pretreatment	Capacity 10 ⁶ l/year
Commercial	Abengoa	USA	2014	Corn stover, wheat straw, grasses	Acid impregnation, steam explosion	95
scale cellulosic	Beta Renewables	Italy	2014	Wheat straw	Steam explosion (two- stage)	76
ethanol projects	GranBio	Brazil	2014	Sugarcane straw	Steam explosion	84
	POET-DSM	USA	2014	Corn stover and cobs	Steam explosion (two- stage)	76
	Quad County Corn Processors	USA	2014	Wheat straw	Steam explosion	76
	Raizen	Brazil	2014	Sugarcane bagasse	Dilute acid	38
	DuPont	USA	2015	Corn stover	Dilute ammonia	95
	Beta Renewables	USA	2016	Energy grass	Steam explosion (two- stage)	76
	Canergy	USA	2017	Energy cane	Steam explosion	95
	Energochemica	Slovakia	2017	Wheat and rapseed straw	Steam explosion	63
	Mascoma	Canada	Delayed	Hard- and pulpwood	Steam explosion	76
	DuPont/Ethanol Europe	Macedonia	N/A	Agricultural residues	Dilute ammonia	N/A
	M&G/Anhui	China	N/A	Agricultural residues	Steam explosion	76
	St1 Biofuels Oy	Finland	2016	Softwood saw dust	Steam explosion	50 - 100
DMAVT						

Department Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering [2] S. Brethauer and M. Studer, 2015. Thomas Pielhop | 11.10.2016 | 13

EHzürich

Biochemical conversion – Engineering challenges

Bioprocessing vs. traditional chemical process industry^[1]

- Larger reactors (100-1000L vs 10.000 40.000L)
- Solids handling/flow more difficult to control than gases or liquids
- Varying feedstock quality (moisture, particle size,...)
- Challenge: reliable solids feeding at high feed pressures
- Upscaling more difficult and time consuming

8

Outline

- Background and state of the art
 - Resource wood
 - Chemicals from wood
 - Biochemical conversion
- Exemplary process Steam explosion with scavenger
 - Softwood recalcitrance
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT Departement Maschinenbau & Verfahrenste Department of Mechanical & Process Engine

Thomas Pielhop | 11.10.2016 | 17

EHzürich

Softwood recalcitrance – Lignin structure

Department Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering [1] G. Gellerstedt and G. Henriksson, 2008.

Softwood recalcitrance – Lignin interunit linkages

Linkage type	Softwood (spruce) / $\%$	Hardwood (birch) / $\%$	
β-O-4	48	60	
α -O-4	6-8	6-8	
4-O-5	3.5 - 4	6.5	
β -5	9 - 12	6	
5-5	9.5 - 11	4.5	
β -1	7	7	
β - β	2	3	
Others	13	5	

C-C linkages

nbau & Verfahrenstechnik [1] E. Adler, 1977. ical & Process Engineering

Softwood lignin

- Less ether bonds/More C-C bonds
- More cross-linked
- Higher total lignin content:
- Softwood 31-34%, Hardwood 24-27%
- More difficult to depolymerise

Thomas Pielhop | 11.10.2016 | 19

ETH zürich

DMAVT

Departement Maschin

Softwood recalcitrance - Softwood vs. hardwood

Outline

- Background and state of the art
 - Resource wood
 - Chemicals from wood
 - **Biochemical conversion**
- Exemplary process Steam explosion with scavenger
 - Softwood recalcitrance
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT Departement Maschinenbau & Verfahrenste Department of Mechanical & Process Engine

Thomas Pielhop | 11.10.2016 | 21

No explosion

Explosion

Pretreatment:

 $logR_0 = 4.4$ (T = 235°C, t = 2.5min)

ETH zürich

DMAVT

Departement Maschinenbau & Verfahrenstechnil Department of Mechanical & Process Engineering

Steam explosion

Steam pretreatment

- High biomass load
- Explosion possible
- Commercial relevance^[1]

Steam explosion

- Fast release of pressure
- Condensed steam in biomass reevaporates
- "Explosion" of biomass

Enzymatic hydrolysis

- Literature: No effect of explosion^[2,3]
- Effect on scavenger pretreatment?

. .

Steam explosion – enzymatic digestibility

- Explosion pressure difference
- Severity (soften up lignocellulose structure)

DMAVT

Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Thomas Pielhop | 11.10.2016

25

30

35

| 23

ETH zürich

Steam explosion – effect on enzymatic digestibility

DMAVT Departement Maschinenbau & Verfahrenstechnil Department of Mechanical & Process Engineering

Elimination of particle size influence

- Isolation of fractions with similar particle size from exploded and non-exploded biomass
- No enhanced digestibility of exploded biomass
- \geq Explosion effect: reduction of particle size Thomas Pielhop | 11.10.2016 | 24

Outline

- Background and state of the art
 - Resource wood
 - Chemicals from wood
 - Biochemical conversion
- Exemplary process Steam explosion with scavenger
 - Softwood recalcitrance
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT Departement Maschinenbau & Verfahrenst Department of Mechanical & Process Engin

Thomas Pielhop | 11.10.2016 | 25

ETH zürich Steam pretreatment – lignin de-/repolymerisation Scavenger OH OH S Depolymerisa Nucleophilio attack óн Ċ O Lignin fragment Depolymerisation Repolymeri; - ROH ό. Repolymerised lignin structure Lignin fragmen Acids released from hemicellulose \rightarrow pH=3...4 Acidic conditions: formation of carbocations in lignin^[1]

Repolymerised and insoluble structures formed^[2]

DMAVT
Departement Maschinenbau & Verfahrenstechnik
[1] K. L. Knut, L. Rolf. Acta Chemica Scandinavia. 1972.
Thomas Pielhop | 11.10.2016 | 26
[2] M. Wayman and J.H. Lora. Tappi. 1978.

Steam explosion with 2-Naphthol

- Solid under ambient conditions
- Hardly water soluble at room temperature
- Melting point: 121°C^[1]

DMAVT

Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering [1] BG Chemie. 1995.

Mixing with biomass

- 2-Naphthol distribution by diffusion only
- Wood chips: mass transfer limitations?

Impregnation of biomass

- Impregnation with acetone
- 2-Naphthol has penetrated wood chips → mass transfer limitations reduced
- Higher "effective" concentration inside the biomass?

Thomas Pielhop | 11.10.2016 | 27

ETH zürich

DMAVT

Departement Maschinenbau & Verfahrens Department of Mechanical & Process Engi

Steam explosion with 2-Naphthol – hydrolysis yields

2-Naphthol works in steam pretreatment

[1] B. Yang et al. Biofuels. 2011.

Thomas Pielhop | 11.10.2016 | 28

enzyme dosages (15 FPU/g cellulose^[1])

Outline

- Background and state of the art
 - Resource wood
 - Lignin
 - Chemicals from wood state of the art
 - Biochemical conversion
- Example: «Steam Explosion with Scavenger»
 - Softwood/Hardwood
 - Steam explosion
 - Chemicals addition
- Conclusions/Outlook

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Thomas Pielhop | 11.10.2016 | 29

ETHzürich

Conclusions

- Wood: potential for bioconversion to fuels and chemicals
- High recalcitrance (in particular softwood) must be surmounted
- Overcoming recalcitrance by e.g. explosion and chemical treatments

Outlook

1st wood-based biorefinery (sugar platform) to open next year

Lignin obtained in scavenger approach

- Less repolymerised C-C bonds; Lower molecular weight
- Higher chemical value for use in polymers or production of aromatic monomers?
- > Improved valorisation of both cellulose and lignin possible?

DMAVT Departement Maschinenbau & Verfahrenstechnik Department of Mechanical & Process Engineering

Thomas Pielhop | 11.10.2016 | 30

Repolymerised

lignin structure

OH

OH

°_L

Ò.

