

Introduction to product-based bio-refinery concepts

Prof. François Marechal Industrial Process and Energy Systems Engineering EPFL, Campus Valais-Wallis, Switzerland (http://ipese.epfl.ch)

Outline

- Introduction
- Concept of biorefineries
- Conversion of Biomass
- Bio-Chemical Conversion Route
- Thermochemical Conversion Route
- Hybrid Conversion Process
- Process Integration
- Conclusions

ENDUSTRIAL PROCESS AND ENERCY VICTORS ENCINEERING

Bio-refinery concept

EXPESSE

Perin-Levasseur. Zoe. Jean Paris, and Francois Marechal. "Analysis of a Biorefinery Integration in a Bisulfite Pulp Process." Pulp and Paper Canada may/june (2010): 31-33.

Bio-chemical plateform

Multi-products : ranked with costs

Thermochemical Conversion Platform

Source: Tock et al., Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis, Biomass and Bioenergy, Vol. 34 (12), pp. 1838 - 1854, 2010. Celebi et al., Computational platform for optimal design of biorefineries using energy and mass integration, ESCAPE25, Denmark, 2015.

Bio-Fuel production

- · Higher energy density
- Distribution network
 - Tank stations
 - Natural gas
- Conversion efficiency
 - Fuel cells => Heat pumps
 - Engines => Cogeneration
 - Combined cycle
- Decentralised systems
 - Cars Airplanes
 - Small cogeneration

Table 7: Fossil CO₂ emissions reduction through the substitution of natural gas by biomass usage pathways for space heating (Reference value $1.00 \equiv 0.165 \text{ kg}_{CO2}/\text{kWh}_{WoodyBiomass}$).

				Heat (Natural gas)				
Biomass to Fuel	Fuel to X	Elec. to Heat	Boiler	Cogen. engine	SOFC	SOFC & GT	CCGT	CCGT & CCS
-	Boiler	-	1.00	0.46	0.38	0.30	0.43	0.40
HTG	Boiler	-	1.02	0.47	0.39	0.31	0.44	0.41
Bio-SNG	Boiler	-	1.01	0.46	0.39	0.31	0.43	0.40
Bio-SNG & Electrolysis	Boiler	-	2.04	0.94	0.79	0.62	0.88	0.82
FT	Boiler	-	0.51	0.23	0.20	0.16	0.22	0.21
FT & Electrolysis	Boiler	-	0.99	0.46	0.38	0.30	0.43	0.40
HTG	Cogen eng	HP	1.93	0.89	0.74	0.59	0.84	0.78
Bio-SNG	Cogen eng	HP	1.98	0.91	0.76	0.60	0.86	0.80
Bio-SNG & Electrolysis	Cogen eng	HP	4.44	2.04	1.71	1.35	1.92	1.79
FT	Cogen eng	HP	1.02	0.47	0.39	0.31	0.44	0.41
FT & Electrolysis	Cogen eng	HP	1.97	0.91	0.76	0.60	0.85	0.79
HTG	SOFC	HP	2.26	1.04	0.87	0.69	0.98	0.91
Bio-SNG	SOFC	HP	2.33	1.07	0.90	0.71	1.01	0.94
Bio-SNG & Electrolysis	SOFC	HP	5.30	2.44	2.04	1.61	2.29	2.13
HTG	SOFC & GT	HP	2.80	1.29	1.08	0.85	1.21	1.13
Bio-SNG	SOFC & GT	HP	2.91	1.34	1.12	0.88	1.26	1.17
Bio-SNG & Electrolysis	SOFC & GT	HP	6.72	3.09	2.59	2.04	2.90	2.71
HTG	CCGT	HP	2.04	0.94	0.79	0.62	0.88	0.82
Bio-SNG	CCGT	HP	2.10	0.96	0.81	0.64	0.91	0.84
Bio-SNG & Electrolysis	CCGT	HP	4.72	2.17	1.82	1.43	2.04	1.90
HTG	CCGT & CCS	HP	2.68	1.61	1.46	1.30	1.56	1.50
Bio-SNG	CCGT & CCS	HP	2.78	1.68	1.53	1.37	1.63	1.57
Bio-SNG & Electrolysis	CCGT & CCS	HP	6.40	3.93	3.59	3.22	3.81	3.67
BIGCC		HP	2.08	0.96	0.80	0.63	0.90	0.84
Torrefaction	Supercritical plant	HP	1.91	0.88	0.73	0.58	0.82	0.77

Ranking the most promising pathways

Rank of the most the promising pathways (economic objectives)

Reducing the CO2 emissions : LCA substitution

Global warming potential : impact reduction

- Ranks with the CO2 savings potential
 - based on the same amount of biomass

Bio-Chemical Conversion Route : speciality/plateform chemicals

1 2 3 4

5678

Bio-Chemical Conversion Route : combined process

Energy balance for biphasic system

200 MW

francois.marechal@epfl.ch

ity(Wood Burner)	Parameter	WO Cogeneration	With Cogeneration
35.783 MW	Wood Available	200	200
Liginin	HMF Production	13641	10550
71.342 MW	Equipment Cost (WO CHP)	97.57	91.53
	Equipment Cost (for CHP)	0	14.62
Biogas 23.119 MW	Total Capital Cost	399	434
HMF 16.580 MW	Total Production Cost	375	366
	Total Profit	1437	1273
Mass & Heat Losses 53.176 MW	Break Even Point	2.57	2.66

Technology	Feed Water Content (wt%)	Reactor Temp.(°C)/Press.(atm)	Catalyst	Glucose Conv.	HMF Yield	HMF Purity wt%	HMF Mass (Kg/h)
Biphasic	70.7%	130 / 4.5	Ag ₃ PW ₁₂ O ₄₀	0.9	0.77	0.991	3030

Source: Masoud Talebi Amiri, Process design of 5-hydroxymethlfurfural (HMF) process and integration in biorefineries, Master Thesis, IPESE, EPFL, July 2014.

10/12/2015

15

Process Integration in Biorefineries

Gassner, Martin, and François Maréchal. "Increasing Efficiency of Fuel Ethanol Production from Lignocellulosic Biomass by Process Integration." Energy & Fuels 27, no. 4 (April 18, 2013): 2107–2115. doi:10.1021/ef301952u.

IPESE

Unit

MW

tons/yr

MM USD

MM USD MM USD

Process Integration in Biorefineries

Energy balance for different process integration options (without seed train, non-optimised).

17

</ IPESE

Process Integration in Biorefineries

Gassner, Martin, and François Maréchal. "Increasing Efficiency of Fuel Ethanol Production from Lignocellulosic Biomass by Process Integration." Energy & Fuels 27, no. 4 (April 18, 2013): 2107–2115. doi:10.1021/ef301952u.

Hybrid (Bio-Chemical & Thermochemical) Process

Combined chemicals and electricity

	Pareto point		Pareto point 2		
	CFB	EF	CFB	EF	
Power Input					
Sugar cane input power	633	633	633	633	[MW]
Leaves input power	147	147	147	147	[MW]
Power Output					
Total net electricity	-2.5	-13.1	-36.8	-34.9	[MW]
Ethanol production	265	265	265	265	[MW]
Methanol production	0	0	211	218	[MW]
Efficiencies					
Energy efficiency	34	33	58	59	[%]
Exergy efficiency	24	24	48	49	[%]
Global carbon conversion efficiency	16	16	33	34	[%]
Economic parameters					
Total investment cost	161.2	158.2	362.5	453.0	MUSD
Operational cost	87.3	87.0	262.9	279.3	MUSD/y
Methanol production cost	-	-	0.83	0.93	USD/kg

Source: Albarelli et al., Multi-objective optimization of a sugarcane biorefinery for integrated ethanol and methanol production, Energy, In Press, 2015.

21

AIPESE

Hybrid Thermo-chemical/bio-chemical platform

The role in the energy system

E. Peduzzi, F. Maréchal and G. Boissonnet (Dirs.). Biomass To Liquids: Thermo-Economic Analysis and Multi-Objective Optimisation. Thèse EPFL, n° 6529 (2015) Gassner, Martin, and François Maréchal. "Thermo-Economic Optimisation of the Integration of Electrolysis in Synthetic Natural Gas Production from Wood." Energy 33, no. 2 (February 2008): 189–198. doi:10.1016/j.energy.2007.09.010.

AIPESE

Conclusions : why biorefineries ?

Bio chemicals

- Green products => Image
- High value/low impact products
- · Life cycle green house gas emissions substitution

Biogenic carbon support

- Fuels : stored & easily distributed energy
- Fuel additives
- Long term electricity storage

Importance of system integration

- · Bio-chemical/thermo-chemical/catalytic reactions integrated
- Grid services
- District heating

Difficulties

- Supply chains
- Economy of scale => process intensification
- Cost of the ressources : wood vs fossil fuels

